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Experimental results are reported on hydrodynamic interactions between a solid 
plate with a spherical particle attached to it and a rigid sphere moving parallel to 
the plate. Trajectories and velocities of the moving sphere were determined by taking 
single-frame multiple-image photographs using stroboscopic light. 

Sphere-sphere hydrodynamic interactions were detectable on the background of 
platesphere interactions for initial dimensionless spherewall separations 2, < 4.9. 
The sphere trajectories were found to be symmetrical for 2, 2 2.3 and asymmetrical 
otherwise. For asymmetrical trajectories the sphere velocity was larger after the 
encounter than prior to it. It was concluded that surface roughness of the spheres 
was responsible for the observed deviations from symmetry. 

Numerical calculations were performed to obtain sphere trajectories and velocities. 
The calculations agree with the experimental data for dimensionless distances 
between sphere centres r > 2.5. For r < 2.5 the numerical results were in fair 
agreement with the data when Z,Z 2.9. For smaller Z,, theoretical predictions were 
inaccurate. 

1. Introduction 
After a decade of rather intense theoretical and experimental efforts hydrodynamic 

interactions between two spheres in Newtonian low-Reynolds-number flow are by 
now well understood, both in the presence and absence of external (gravity, electric 
and magnetic fields, etc.) or internal forces (van der Weals, double-layer interactions, 
etc.), (Batchelor & Green 1972; Arp & Mason 1977a, b ;  van de Ven & Mason 1976, 
1977 ; Adler 1981 a, b ;  Takamura, Goldsmith & Mason 1981 ; van de Ven 1982 ; Jeffrey 
& Onishi 1984). All these efforts were directed to two-sphere systems in unbounded 
liquids in which the influence of neighbouring walls was neglected. In many practical 
applications wall effects can be of tremendous importance, especially in problems 
related to surface aggregation and coating. For instance, it is well known that the 
presence of particles on a surface strongly affects the rate at which particles deposit 
on collector surfaces. Particles deposited on a surface are sometimes able to block 
(making unavailable for further deposition) an area 25 times their size (Dgbro6 & van 
de Ven 1982, 1983). It is believed that in two-particle collisions at a wall a mobile 
sphere can be pushed away from the wall by a deposited sphere, thus reducing its 
probability of deposition. 

The influence of a wall on a single sphere is also well understood (Faxen 1923; 
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Goldman, Cox & Brenner 1967; O'Neill & Stewartson 1967; O'Neill 1968; Cox & 
Mason 197 1 ) .  Experimental verifications of several aspects of spherewall interactions 
have been published as well (Darabaner & Mason 1967 ; Miyamura, Jwasaki & Ishii 
1981; Ambari, Manuel & Guyon 1983; Adamczyk, Adamczyk & van de Ven 1983), 
but agreement for very short sphere-wall separations is usually poor. 

This paper deals with two-sphere interactions near a wall, one of the spheres being 
immobile and attached to the wall, the other one being freely mobile. Approximate 
theories are developed to describe these interactions. Experiments are described for 
determining the trajectories and velocities of the mobile sphere and the results are 
compared with theory. 

2. Theory 
Let us consider two spherical particles subjected to  gravity in the proximity of a 

solid wall in an incompressible fluid satisfying the stationary creeping-flow equation 

pvzv = wp, ( 1 )  

v.v = 0, (2) 

where v = (vz, vy, vz) is bhe fluid-velocity vector, p the pressure and ,u the dynamic 
viscosity. The Cartesian coordinate system will be oriented in such a way that the 
wall coincides with the z = 0 plane and the gravitational force acts in the y-direction. 
A schematic representat,ion is given in figure 1. We want to calculate the velocity 
of particle A which is free to move and to rotate. Particle B is kept stationary a t  
a given position by external forces F f ,  F f ,  and F: which will counteract the 
hydrodynamic forces produced by the flow disturbances caused by particle A. The 
settling velocity of particle A is affected by the presence of particle B and the wall. 
An external force acting upon A is at any instant, through viscous stresses, 
transferred to the fluid, producing flow disturbances which in turn must satisfy the 
no-slip boundary condition a t  the surfaces of particles and wall and tend to  zero a t  
infinity. To obtain the solution of this problem, which is well-defined and possesses 
a unique solution, we can make use of the singularity method, described by DgbroS 
(1985). 

Generally speaking, in this method one looks for such intensities of the singular 
forces and sources located near the particle's centre, and eventually for such 
translational and angular velocities of the given particle, that  the no-slip boundary 
conditions are satisfied, a t  least in a least-mean-square sense, at the particle's 
surfaces. When a particle is free to translate and rotate, the sum of the proper 
components of the singular forces in each particle, and the torques associated with 
them, must be equal to  the external force and torque acting upon the particle. This 
requirement yields a number of constrained equations imposed on the singular forces 
of every particle which must be satisfied exactly. 

The flow velocity vi a t  (q, yl, z l )  produced by a point force fj acting a t  (xz, yz, zz) 
in the presence of a solid-plane wall located a t  z = 0 is given by (Blake 1971 ; Blake 
& Chwang 1974): 

Here t i j  is the Oseen tensor 
6 r . r  
r r 3 '  

tii = A + X  (4) 
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FIGURE 1.  Coordinates and notations used in the description of the system. 

where r1 = x, - x,, r2 = y, - y,, r3 = z, - z2 and r = (C r?);. The second term in brackets 
in (3)  can be related to  the image system, in this case consisting of a Stokeslet (point 
force), a Stokes doublet and a source doublet with a proper strength to make the fluid 
velocity equal to zero a t  z = 0. Blake has shown that 

where a = 1 , 2  ; R, = x, - x,, R, = y, - y,, R, = z1 + z2 and R = (Z Rf):. The disturbance 
flow a t  (xl, y,, z,) caused by a singular source a t  (x,, y,, z,) with volume outflow M per 
unit time, equals 

M 
(6) 

a 4.rr a '  
u. = -8. 

where, in the presence of a stationary-plane boundary a t  z = 0, si is given by 

I n  the calculations of the velocity of the free sphere, we have used 13 singular forces 
and sources distributed symmetrically at (0, 0, 0), ( + 6 ,  0, 0), (0, + 6.0) and (0.0. f 6) 
with 6 = 0.01 and 0.1 ( b  non-dimensionalized by the sphere radius). The number of 
surface points (to define the shape of the particle) was equal to 42. These points too 
were distributed symmetrically over the surface of the sphere. An identical number 
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and distribution of singular forces and sources and surface points were used for the 
stationary sphere. For the stationary sphere, the velocity of the surface points is equal 
to zero, and no constraints are placed on the intensities of the singularities. The mobile 
sphere was free to rotate and translate under gravity forces. The sum of the 
appropriate components of the singular forces must be balanced against those of the 
external forces. Because no external torque is imposed on the particle, the singular 
forces must fulfil the condition that the torque caused by them equals zero. 

When the mobile sphere is close to the immobile one, this method becomes 
inaccurate. In  principle the accuracy can be improved by taking more singular forces 
and sources. For more details the reader is referred to  the paper by Dqbro5 (1985). 
This singularity method was used to calculate the velocity of the freely mobile 
spheres, which is compared with the experimental velocities described below in $3. 

It is of interest to look at the limit of the gap width e between the spheres 
approaching zero. For such conditions the singularity method outlined above fails. 
As E + O ,  the trajectory becomes identical with that of a freely mobile sphere to  a fixed 
one in the absence of a wall, the forces and torques being dictated by the lubrication 
in the gap. Assume the fixed sphere at the centre of a polar coordinate system ( r ,  q5), 
r being the dimensionless centre-to-centre distance and q5 the angle between the z-axis 
and r ;  then the forces F and torque T on the freely mobile sphere can be expressed 
as : 

F, = clur = mg sin$, 

F$ = C ~ U - C ~ W  = mg COS$, ( 8 b )  

T =  - c ~ u $ + c ~ w = O .  ( 8 c )  

Here u, = dr/dt, u$ = rd$/dt and w is the angular velocity of the free sphere. For 
equal spheres (Stimson & Jeffery 1926; Maude 1961 ; Davis 1969; O’Neill& Majumdar 
1970; Jeffrey & Onishi 1984): 

3npa 
c1 = - 

2 E  * 

c3 = zpa2 In E ,  

c2 = - npa In e, 

c4 = - $pa3 In E. 

From (8)  i t  follows that 

(9) 
dr c 2 c 4 - c i  - _  u r - - = p  tan 4. 

u$ ‘$ ‘1‘4 

Integration of (9) yields the trajectory equation 

E ,  being the minimum gap width when $ = 0. It can be seen that the trajectories 
are symmetrical with respect to g5 = 0. This is not only true for small gap widths e, 
but for all trajectories, a fact which follows directly from the linearity of the 
creeping-flow equation. 

Comparison of the trajectory of a freely mobile sphere in the presence of a wall 
with that in the absence of a wall is useful in determining a lower limit of the gap 
width between the two spheres. When q4 = 0 and for a given gap width, in the absence 
of a wall the velocity (the velocity u$ at q5 = 0) is higher than in the presence of 
the wall, because with the wall the hydrodynamic resistance is increased. It follows 
that for a given sphere velocity the gap between the spheres will be larger in the 
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presence of the wall than in its absence. From the values of the coefficients ci in the 
absence of a wall it can be shown that 

-16 lne+56.224 
ln2 E - 28.531 In e + 54.605 ' 

4 = 0  - 
u, 

where u, is the velocity of a single sphere in an unbounded fluid. 

3. Experimental 
The experiments consisted of observing, filming and analysing the motion of a 

sphere falling parallel to a transparent wall to which a second sphere was attached. 
The experiments were carried out using the single-frame multiple-image technique. 

The essential parts of the experimental set-up were the same as described elsewhere 
(Adamczyk, Adamczyk & van de Ven 1983). It consisted of a Plexiglas reservoir of 
dimensions 42 x 42 x 52 cm with two viewing windows (14 x 29 cm) made of high- 
quality optical glass, and two perpendicularly located Linhoff photo cameras. 

A nylon sphere of diameter 0.6357+0.0008 cm was glued to the centre of a 
Plexiglas plate of size 30 x 35 cm. The plate was mounted perpendicularly to a base 
plate equipped with adjustable screws, allowing for a precise vertical position. The 
whole element was subsequently located inside the reservoir in such a manner that 
the vertical Plexiglas plate was in the median plane of the reservoir, with the fixed 
sphere at its centre. The optical axis of one camera was perpendicular, and of the 
other camera parallel, to the plate with the sphere. Both cameras and the reservoir 
could be moved up and down within a 30 cm range. A stroboscopic lighting system 
was used to illuminate the experimental set-up. The flashing light source was 
triggered externally with the help of a Contax RTS 11 quartz photo apparatus having 
a professional motor drive. This drive is equipped with a built-in interval timer which 
allows one to trigger the stroboscopic lamp with a preset frequency. By taking 
photographs of a stop-watch, it was found that the uncertainty of the timer was 
about 0.5-1 .O yo. 

The reservoir was filled with a silicone oil (Dow Corning) of density 0.9735 g/cm3 
and kinematic viscosity of 9.82 stokes (25OC). A nylon sphere with diameter of 
0.6362+0.0011 cm was used as the moving sphere. The size of the spheres was 
measured using a Nikon shadograph. Twenty measurements of the sphere diameter 
were made at  different positions and the average value was calculated. A t  the 
beginning of each experiment, the free sphere was sucked, with the help of a water 
pump, to the tip of a pipette which was maintained in a special holder equipped 
with two screws, allowing motion in two perpendicular directions within a distance 
of a few centimetres. The tip of the pipette was positioned a few millimetres below 
the oil surface. The pipette with the sphere was placed at  a chosen distance from 
the Plexiglas plate and subsequently the sphere was released by switching off the 
suction. The Linhoff camera with optical axis perpendicular to the plate with the 
attached sphere, was used to check ifthe falling sphere was in the equatorial ( y, %)-plane 
of the attached sphere. The pipette was moved parallel to the plate until the images 
of the moving sphere covered the image of the fixed one. Polaroid High Speed 
(9 x 12 cm) Land Film Type 57 was used to take the multiple-image photographs of 
the moving sphere. An example of photographs from both cameras is presented in 
figure 2. Photographs from the camera with optical axis parallel to the plane were 
used to determine the sphere velocity and its trajectory near the attached particle. 
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FIGURE 2. Photographs obtained by multiple image technique from the camera with optical 
axis (a )  perpendicular, ( b )  parallel, to the plate with attached sphere. 

The positions of the sphere images in the photographs were measured with a precision 
of 0.01 mm. 

For each experimental run the cameras were fixed at three different positions: 
above, a t  the same level as, and below, the attached particle. Thus, the motion of the 
free sphere could be detected both before and after the encounter with the attached 
particle. All experiments were performed a t  a temperature of 25k0.2 "C. The 
Reynolds number based on the sphere diameter was lop2, so that the conditions of 
creeping flow applied. 

The radius a and the coordinates y and z of the centre (see figures 1 and 2) of the 
moving sphere were measured in each photograph. At a given position of the sphere 
its velocity in the y-direction can be expressed, in units normalized with respect to  
the sphere radius, as 

[units of radius s-l], (12) 
u =  q 0 1 ) -  Yt-11 

Y 2At 

where i refers to the frame number and At the time between flashes. 
Analogously we have 

'(i+1)-'(f-1) [units of radius s-l]. (13) 2At 
u, = 

The total particle velocity u is equal to the vectorial sum of its component in both 

(14) 
y- and z-directions : 

u = uy+u,, u, = 0. 

We define a normalized velocity of the particle near the wall as U = u/u,. The 
normalized velocities were calculated from the particle velocity which was determined 
experimentally in the centre of the  reservoir after removing the plate with the 
attached particle. The determined u,-value was equal to 0.991 k0.014 radius s-l 
(average from three independent experimental runs). The ratio of the radius of the 
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FIGURE 3. The y- and z-components of the sphere velocity, and its trajectory aa a function of the 
dimensionless distance Y from the centre of attached particle for initial separation 2, = 1.34. 
Symbols refer to various experimental runs. Lines are smooth fits through the data. 

moving sphere and the distance to the wall was 0.015. The experimentally determined 
u,-value was about 3.5% lower than the theoretical value for an unbounded fluid 
(mg/67cpa). From the experimental data on correction factors in square cylinders by 
Miyamura, Jwasaki & Ishii (1981), it can be concluded that this difference is solely 
due to wall interactions. For convenience, our experimental results are normalized 
with respect to experimentally determined u,-values. 

4. Results and discussion 
The trajectories and sphere velocities for initial separations close to the wall are 

given in figure 3 and for initial separations relatively far from the wall in figure 4. 
Both figures show the y- and z-components of the sphere velocity (u, = 0) and the 
sphere trajectory ( z  w. y). For figure 3, the initial separation to the wall Zo( = z / a )  
= 1.34 while, for figure 4, 2, = 2.88. It can be seen that for small separations the 
trajectories and velocities are asymmetric, while for large separations they become 
symmetric. When Y( = y / a )  < -6 or Y > 6, the particle velocity in the y-direction 
is approximately constant and in the z-direction approximately zero. For these 
orientations the particles move parallel to the wall ( z  is constant). Closer to the 
sphere U ,  decreases and reaches a minimum. For symmetrical trajectories a wide 
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FIGURE 4. The y- and z-components of the sphere velocity, and its trajectory as a function of 
dimensionless distance Y from the centre of attached particle, for initial separation 2, = 2.88. 
Symbols refer to various experimental runs. Lines are smooth fits through the data. 

shallow minimum occurs around Y = 0, while for asymmetric trajectories a steep mini- 
mum occurs for Y < 0. The steepness of the minimum decreases with increasing 2,. 
I U, I shows two maxima located symmetrically about Y = 0, which are slightly asym- 
metric for small 2,-values (U,  < 0 for Y > 0). For the trajectory in figure 3 (2 vs. Y 
curve) i t  can be seen that for low 2, the distance to the wall of the mobile sphere 
is larger after the encounter than prior to  it. This larger distance corresponds to a 
higher velocity after the encounter. For 2, 3 2.3 trajectories and velocities were 
found to  be symmetric. 

The particle velocity U = I UI is shown in figures 5 and 6 as a function of the 
dimensionless distance Y for the investigated range of initial separation distances 2, 
together with numerical results of the singularity methods (solid lines). The numerical 
data start to  deviate from the experimental data for small values of Y ( - 2 < Y < 2), 
i.e. when the systems are close together. For 2, 3 4.9 (figure 5), no hydrodynamic 
interactions between the fixed and free spheres were detected on the background of 
interactions with the plate. For the interaction between the mobile and a fixed sphere 
in the absence of a wall, the deviation from a straight trajectory is predicted to be 
5 yo for 2, = 4.9, but in the presence of a wall the deviation will be different. Within 
the range 2.3 < 2, < 4.9 (figure 5), the particle motion was practically symmetrical 
about the z-axis. The velocities of the moving sphere were identical before and after 
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FIQTJRE 6. The total sphere velocity U as a function of dimensionless distance Y for various initial 
separations2, < 2.0. O,Z, = 2.00; O,Z, = 1.35; A, 2, = 1.05; and, O,Z, < 1.01 (sphere pressed 
against plate). Solid parts of curves (I Y I > 2.5) are calculated from the singularity method. Dashed 
parts are smooth experimental fits. 

the encounter, i.e. for Y < -2 and Y > 2. Near the attached particle, i.e. for 
-2 < Y < 2, the velocity of the sphere was minimum. When the initial separation 
distances Z,2 2.3 this minimum was not sharp, but a rather large region of nearly 
constant velocity near the fixed particle was observed. When 2,s 2, minima in U 
vs. Y curves were found to be sharp (see figure 6). The position of the minimum 
changes with 2, and tends to Y = -2 as Z,+ 1, i.e. as the sphere moves closer and 
closer to the solid plate. It can also be seen from figure 6 that, for 2, 5 2, after the 
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encounter all sphere trajectories are identical, independent of the initial separation 
distance 2,. 

It is of interest to note the interplay between spherewall and spheresphere 
interactions. For initial conditions near the wall, when the mobile sphere is far from 
the fixed one, the velocity of the sphere U < 1 owing to hydrodynamic sphere-wall 
resistance. When the sphere approaches the fixed sphere, spheresphere hydro- 
dynamic interactions become noticeable on the background of the sphere-wall 
interactions. As a result of spheresphere interactions the moving sphere is pushed 
away from the wall when Y -to (figures 3 and 4). The moving sphere is a t  the farthest 
distance from the wall when Y = 0. At this position spherewall interaction is 
minimum, while the spheresphere interaction reaches a maximum level. In  the case 
of ideal smooth spheres the gap 8 between spheres reaches its minimum value when 
Y = 0. For Y > 0 the process is reversed and the sphere trajectory is symmetrical 
with respect to the equatorial plane ( Y = 0) of the deposited sphere. Such symmetrical 
trajectories were observed in our system for initial separation distances Z,2 2.34 
(cf. figure 5). 

The asymmetrical trajectories that we observe when 2, < 2.0 (figure 6) indicate 
that in our system the spheres were prevented from approaching to distances dictated 
by purely hydrodynamic considerations for ideal spheres. The fact that  for initial wall 
separations 2, < 2.3 all the receding trajectories are identical suggests that  the 
spheres are unable to approach closer than a certain distance, most likely determined 
by the surface roughness of the spheres. Here one is reminded of two-sphere 
trajectories in a simple shear flow, studied by Arp & Mason (1977b). For trajectory 
constants below a certain value, all receding trajectories were found to be identical. 
The minimum distance of approach determined from the receding trajectory was 
typical of the dimensions of the surface roughness of the spheres. 

When 2, < 2 the experimentally determined sphere velocity at Y = 0 was 
U+, = 0.49 in all cases (figure 6),  corresponding, according to ( l l ) ,  to E = 4.2 x 
or to a gap width between the sphere in the absence of the wall of 0.13 pm. This gap 
width would be the minimum of approach if one sphere was fixed and the second 
moved in an unbounded liquid. Thc presence of a wall will decrease the sphere 
velocity. Thus, the velocity U+, = 0.49 in the presence of the wall indicates that in 
our system the minimum gap between spheres at Y = 0 was larger than 0.13 pm. 

A second estimate can be made in a similar way from the velocity of the first more 
or less symmetrical trajectory (figure 5 ) .  For this trajectory U#-, = 0.54, from which 
it follows that the gap width is about 1.6 pm. As a result of the presence of a wall 
the gap width of 1.6 pm cannot be considered as an upper limit, but rather as an 
approximate value showing order of magnitude of the maximum spheres roughness. 
Thus, we can conclude that the spheres roughness was larger than 0.13 pm and could 
be as large as a few micrometres. 

Other possible factors contributing to asymmetrical trajectories are deviations 
from sphericity for one or both particles and specific properties of the thin liquid film 
in the gap. The deviation from sphericity of our spheres was less than 0.2 yo and this 
will introduce only a very slight asymmetry in the trajectories (cf. Adamczyk & 
van de Ven 1983). Changes in properties of the liquid in a thin layer only manifest 
themselves for films thinner than 0.1 pm (Vrij 1966), which is smaller than the 
minimum distance of approach. Thus surface roughness is by far the most important 
factor causing the observed asymmetric trajectories. 

The correctness of this conclusion is also confirmed by a scanning electron 
micrograph of the surface of the mobile sphere presented in figure 7 .  It can be seen 



Sedimentation of one sphere past a second attached to a wall 167 

- 
50 pn 

F’IOURE 7 .  Scannipg electron micrograph of the sphere surface. 

that the surface of the sphere is not smooth. It is not possible to  determine from 
this figure the depth of the surface rugosities, but the observed textures with a length- 
scale of 10 pm or more suggest a roughness of the order of a few micrometres. Thus 
the precision spheres used in our experiments had rather rough surfaces. 

I n  figures 5 and 6 the full lines represent the theoretical velocity values calculated 
by the singularity method. The experimentally determined values of the distances 
Y and 2 were used in the calculation of the theoretical values of the velocity a t  a 
given sphere position. For 2, > 2 (figure 5), a very good agreement between 
experimental and theoretical velocity values was found when I YI 2 2.5. When the 
sphere was closer to the wall, 1.05 < 2, < 2 (figure 6), good agreement was obtained 
for I YI 2 3.0. For 2, 5 1.05, theoretical predictions are inaccurate. Near the 
attached particle, i.e. for -2.5 < Y < 2.5, the good agreement between experiment 
and theory is only found when 2, 2 2.88 (see figure 8). When 2, = 2.88 the results 
computed by the singularity method differ by 3 yo from the experimental data in the 
region -2.5 < Y r 2.5. These differences become more and more pronounced when 
the mobile sphere passes closer and closer to the fixed one, i.e. when 2, decreases. 
I n  principle it is possible to  obtain better agreement by using more singular forces 
and sources in the numerical computations (at the cost of increased computer time). 

The dependence of the experimentally determined sphere velocity on initial 
separation distance is shown in figure 9 for regions near to (lower curve) and far from 
(upper curve) the attached sphere. It can be seen from figure 9 that the fixed particle 
affected the motion of the moving one a t  separation distances smaller than 4.9. I n  
this region the sphere velocities far from the centre of the attached particle (upper 
curve) were higher than the mobilities near the attached particle (lower curve). When 
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FIGURE 9. Experimentally determined sphere velocity U as a function of initial separation distance 
2,. Curve 1 ,  velocity values for Y < - 8. Curve 2, minimum values of the velocity in U vs. Y curves. 
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2, 2 4.9 the sphere-sphere hydrodynamic interactions were not detectable on the 
background of plate-sphere interactions. 

5. Concluding remarks 
Although theory predicts hydrodynamic two-sphere interactions to be symmetrical, 

for small initial wall-sphere separations actual trajectories were found to be 
asymmetric. We concluded that surface roughness prevents the spheres from 
approaching to within the small distances dictated by purely hydrodynamic con- 
siderations for ideal smooth spheres. For our spheres, roughness asperities of the 
order of micrometres were responsible for the asymmetric behaviour, observed for 
initial sphere-wall separations 2,s 2. For 2, 2 2.3 the trajectories were found to be 
symmetrical and, when the distances between the mobile sphere and the fixed sphere 
were not too small, i.e. when 1 YI > 2.5, the experimental observations agreed very 
well with the numerical calculations. For 2, 2 2.9, the singularity method is in fair 
agreement with experiment for all gap widths; for 2, < 2.9 discrepancies between 
theoretical predictions and experimental data become more and more pronounced 
when the mobile sphere is close to the fixed one. For 2, 2 4.9, sphere-sphere 
interactions are insignificant and undetectable on the background of spherewall 
interactions. 

It is of interest to discuss what happens to spheres of colloidal size, i.e. in the range 
10-1000 nm. In the absence of colloidal forces a surfaces roughness of particle 
radius (a fraction of an Angstrom) will have a similar effect on the trajectory in 
pushing the mobile sphere away from the wall as in our macroscopic experiments. 
However other effects usually become important, such as van der Waals, electrostatic 
and possibly solvation forces. In  an electrostatically stabilized suspension the energy 
of interaction between two particles exhibits an energy barrier at a distance of 
a few nanometres, preventing closer contact. Assuming & x 3 nm, then 
E, x 0.3-0.003 (for a = 10-1OOO nm). This corresponds to U+o ranging from 0.6 to 
0.8 (cf. equation l l ) ,  which in turn corresponds to distances to the wall (after the 
encounter) in the range 2 = 2.5-3.2. This means that, when a mobile colloidal particle 
encounters a similar particle deposited on a wall, it  will be pushed a substantial 
distance away from the wall. The probability that the mobile particle will deposit 
on the wall is thereby considerably reduced. Such phenomena appear to be responsible 
for blocking effects occurring in coating processes. To understand these phenomena 
in a more quantitative way, more accurate predictions of hydrodynamic two-sphere 
interactions at  a wall are needed, especially for small gap widths. 
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